The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways
نویسندگان
چکیده
The neural fate commitment of pluripotent stem cells requires the repression of extrinsic inhibitory signals and the activation of intrinsic positive transcription factors. However, how these two events are integrated to ensure appropriate neural conversion remains unclear. In this study, we showed that Pou3f1 is essential for the neural differentiation of mouse embryonic stem cells (ESCs), specifically during the transition from epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs). Chimeric analysis showed that Pou3f1 knockdown leads to a markedly decreased incorporation of ESCs in the neuroectoderm. By contrast, Pou3f1-overexpressing ESC derivatives preferentially contribute to the neuroectoderm. Genome-wide ChIP-seq and RNA-seq analyses indicated that Pou3f1 is an upstream activator of neural lineage genes, and also is a repressor of BMP and Wnt signaling. Our results established that Pou3f1 promotes the neural fate commitment of pluripotent stem cells through a dual role, activating internal neural induction programs and antagonizing extrinsic neural inhibitory signals.
منابع مشابه
Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment
Appropriate neural initiation of the pluripotent stem cells in the early embryos is critical for the development of the central nervous system. This process is regulated by the coordination of extrinsic signals and intrinsic programs. However, how the coordination is achieved to ensure proper neural fate commitment is largely unknown. Here, taking advantage of genome-wide ChIP-sequencing (ChIP-...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملRecent Advances in T Cell Signaling in Aging
The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...
متن کاملMany neural and non-neural cell types in vertebrates are produced by the neural crest, a transient embryonic structure that emerges during neurulation in the dorsal part of the neural tube (Le Douarin
INTRODUCTION Many neural and non-neural cell types in vertebrates are produced by the neural crest, a transient embryonic structure that emerges during neurulation in the dorsal part of the neural tube (Le Douarin et al., 2008). Among the neural crest derivatives are the pigment cells in the skin that are reported to originate either directly from neural crest cells migrating from the neural tu...
متن کاملP 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کامل